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Deissler Rank Complexity of Powers
of Indecomposable Injective Modules

R. CHARTRAND and T. KUCERA

Abstract Minimality ranks in the style of Deissler are one way of measur-
ing the structural complexity of minimal extensions of first-order structures. In
particular, positive Deissler rank measures the complexity of the injective en-
velope of a module as an extension of that module. In this paper we solve a
problem of the second author by showing that certain injective envelopes have
the maximum possible positive Deissler rank complexity. The proof shows that
this complexity naturally reflects the internal structure of the injective extension
in the form of the levels of the Matlis hierarchy.

In this paper we present a general and positive solution to a problem raised in Kucera
[4]. The problem concerns the structural complexity of injective modules over a com-
mutative Noetherian ring �. An injective module is essentially one wherein every
formally consistent system of linear equations has a solution. The injective envelope
of a module (minimal injective extension) can be constructed by adding solutions to
linear systems, in a manner analogous to the construction of the algebraic closure of
a field (see, for instance, Kucera [5] for details). Thus it makes sense to analyze the
structural complexity of injective envelopes in terms of patterns of solutions of linear
systems. There is further support for this idea from the viewpoint of mathematical
logic. A positive primitive formula (in the first-order language of �-modules) is a
formula ϕ(�x) of the form

∃�y
n∧

i=1

ϕi(�x, �y)

where each ϕi is a linear equation with coefficients from �. As is well known, every
first-order formula in the language of �-modules is equivalent to a Boolean combi-
nation of positive primitive formulas (see for example Section 2.4 of Prest [8]). The
situation is even better for injective modules over Noetherian rings, for in the first-
order theory of such a module, every positive primitive formula is equivalent to a
finite system of linear equations (see Theorem 3.12 of [2] and see also [4]). Thus in
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such a module, every definable set is a Boolean combination of solution sets of finite
systems of linear equations.

One way of carrying out an analysis of the kind desired is by means of the defin-
ability rank of Deissler introduced in his [1] for complete first-order theories, and gen-
eralized in Kucera [3]. Deissler’s rank was studied further in Woodrow and Knight
[9]. We use the positive rank of [3]. In the context of this paper we say that a subset
S of an injective module M is definable over A ⊂ M if S is the set of all solutions in
M of some finite system of linear equations in one free variable and with constants
from A; and we say that an element m of M is definable over A if it is the unique
solution of such a system. (Note that such a linear equation might be of a form like
r.v = s.a + t.b, for some r, s, t in � and a and b in A, so that we are really dealing
with finite systems of linear equations over the submodule of M generated by A.)

The formal definition of positive Deissler rank follows.

Definition 1 Let M be an injective module, b ∈ M, A ⊂ M.

(i) rk+(b, A, M ) = 0 iff b is definable over A in M .

(ii) For any ordinal ξ > 0, rk+(b, A, M ) = ξ iff ξ is the least ordinal α such that
for some finite system of linear equations ϕ(v) with constants from A, ϕ is con-
sistent and for every solution c of ϕ in M , rk+(b, A ∪ {c}, M ) < α.

(iii) If rk+(b, A, M ) �= ξ for all ordinals ξ, then rk+(b, A, M ) = ∞.

(iv) rk+(M /A) = sup{rk+(b, A, M ) + 1 : b ∈ M }.
If � is a commutative Noetherian ring and M is an indecomposable injective

�-module, then M has the form M = E(�/P) where P is a prime ideal of � and
E(—) denotes the injective envelope. In [3] it was shown that if M = E(�/P) and
A = �/P then rk+(M /A) is 1 or 2, and that rk+(M (κ)/A(κ)) ≤ ω for any infinite
cardinal κ.

In this paper we calculate exact values for positive rank in the case of infinite
powers. In order to understand the meaning of these results, we need the hierarchy of
submodules in indecomposable injectives introduced by Matlis [6]. For M an inde-
composable as above, Ai(M ) = Ai = {a ∈ M : Pi.a = 0}. (Ai)i∈ω is an increasing se-
quence of submodules of M , M = ⋃

i∈ω Ai, A1 is isomorphic as an M -module to the
quotient field K of �/P, and each Ai+1/Ai is a finite dimensional vector space over
K. The positive Deissler rank of an indecomposable does not “see” the levels of the
hierarchy; the fact that rk+(M /A) ≤ 2 reflects the indecomposability of M = E(A):
elements of M are only one step away from being definable from A. The elements
of A1 are exactly the elements definable from A, and so rk+(M /A) = 1 iff M = A1.
(It is not known if there are any similar kinds of results in the non-commutative case.)
In M (κ) (κ infinite), positive Deissler rank reflects the levels of the Matlis hierarchy
precisely, as we shall see below.

The definition of rank as given above is often awkward to work with in practice.
It is sometimes more convenient to work with a description of the entire body of the
recursive computation of rank all at once. We repeat the definition of an analysis of
rank from [3], specialized for the purposes of this paper.

Definition 2 An analysis of rk+(b, A, M ) is a labeled rooted tree 〈T, <, λ〉 of the
following sort:
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(i) For each node t ∈ T , the label λ(t) is a pair 〈ϕ(v), C〉 where C ⊂ M and ϕ is
a consistent finite system of linear equations in the one variable v over C, and
in particular if t is the root of T , then λ(t) = 〈ϕ, A〉 for some such ϕ.

(ii) For each t ∈ T , if t is a leaf (terminal node) of T and λ(t) = 〈ϕ, C〉 then b is
defined by ϕ over C in M .

(iii) For each t ∈ T , if t is not a leaf of T and λ(t) = 〈ϕ, C〉 then the successors of
t are in one-to-one correspondence with the solutions of ϕ in M , the second
component of the labels of these successors ranging over all sets of the form
C ∪ {m}, m a solution of ϕ in M .

(iv) 〈T, <〉 is a well-founded tree, that is, the branches of T are finite.

The usual foundation rank of 〈T, <〉 is denoted “rank(T )”. It is clear that
if 〈T, <, λ〉 is an analysis of rk+(b, A, M ), then rk+(b, A, M ) ≤ rank(T ). If
these two ranks are actually equal, then 〈T, <, λ〉 is called an accurate analysis of
rk+(b, A, M ) (and such always exists) [3].

For the purposes of stating and proving our theorem, we fix the same notation
as in [4]:

Let � be a commutative Noetherian ring, P a prime ideal of �, κ an infinite
cardinal, E = E(�/P)(κ), B = (�/P)(κ) (so that E = E(B)). For each i ∈ ω let
Bi = {m ∈ E : Pim = 0}. Note that if Ai ⊂ E(�/P) is the i-th level of the Matlis
hierarchy in E(�/P) then Bi = A(κ)

i . For the basic facts of ideal theory used below,
we refer the reader to any standard reference, in particular to Northcott [7].

Theorem 3

(i) If a ∈ Bn+1 \ Bn then rk+(a, B, E) = n.

(ii) rk+(E/B) = sup{n + 1 : Bn+1 \ Bn �= ∅}.
In Theorem 2.5 of [4] these were inequalities rather than equalities. Thus our

result provides a positive and general solution to the conjecture of Section 2.9 of [4].

Proof: Part (ii) follows immediately from (i) and the definitions. From Theorem 2.5
of [4] it follows that every element of B1 has rank 0, and by the same argument as in
the proof of Theorem 2.4 of [4] it follows that any element of E not in B1 has rank at
least 1. Thus B1 consists precisely of the elements of rank 0. Again from Theorem
2.5 of [4] the elements of B2 \ B1 have rank less than or equal to 1, so they must have
rank exactly 1. Thus the theorem holds when n = 0 or n = 1.

So assume that n ≥ 2 and that for every c ∈ Bn \ Bn−1, rk+(c, B, E) = n − 1.
Let b ∈ Bn+1 \ Bn. Since b �∈ Bn there must be p0, . . . , pn−1 ∈ P such that pn−1 ·
. . . · p0.b �= 0, but for any qn, . . . , q1 ∈ P, qn · . . . · q1 p0.b = 0. Thus p0.b ∈
Bn \ Bn−1 and so rk+(p0.b, B, E) = n − 1. Suppose that rk+(b, B, E) = m < n.
Fix an accurate analysis 〈T, <, λ〉 of rk+(b, B, E), hence of (tree) rank m. By The-
orem 2.1 part (iii) of [3] we can assume without loss of generality that the only for-
mulas appearing in 〈T, <, λ〉 that define a singleton are the formulas at the leaves.
(Note that there is unique division in E by elements of � \ P: the formulas defining
a singleton are exactly those equivalent to a single equation r.v = a with r �∈ P.) We
show how to construct from this tree an analysis of rk+(p0.b, B, E) of rank m − 1,
a contradiction.
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Consider first any leaf t of T which is not at the maximum level m of T . The
formula part of λ(t) is some formula (system of equations) ϕ(v, c1, . . . , ck) defin-
ing b; replace it by the formula ϕ(v, p0.c1, . . . , p0.ck) which clearly defines p0.b .
Now consider those leaves at the maximum level m of T ; we eliminate them from
T as follows. Let t be the predecessor of such a leaf (so all the successors of t are
leaves). There are consistent ϕ0(v) over B and for each i ∈ {1, . . . , m − 1}, a so-
lution ei−1 of ϕi−1(v) in E and consistent ϕi(v) over B ∪ {e j : j < i}, with λ(t) =
〈ϕm−1, B ∪ {e j : j < m − 1}〉. Since ϕm−1 is a finite system of linear equations over
B ∪ {e0, . . . , em−2}, that is, over the submodule of E generated by this set, it can be
written in the form

ϕm−1(v) =
k∧

i=1

(ri.v =
m−2∑

j=0

rij.e j + ci)

where each ci is in B. Since t is not a leaf, ϕm−1 does not define a singleton and
thus ri ∈ P for each i. Let J be the ideal generated by {r1, . . . , rk}. Without loss
of generality, by Theorem 2.6 of [4], we may assume that ϕm−1(v) is a complete for-
mula and so determines the annihilator I of its solutions. Note that I is necessarily
a P-primary ideal, in fact by Theorem 0.3 of [4], since κ is infinite, an ideal is P-
primary iff it is the annihilator of some element of E. Since J contains I, for some l,
P ⊃ J ⊃ Pl . Thus P must be a minimal prime of J, so J has a P-primary component
J1, and J1 = J�\P = {s ∈ � : rs ∈ J for some r ∈ � \ P} (since any other prime ideal
belonging to J must meet � \ P). Let

Z = {α ∈ κ : e0(α) = . . . = em−2(α) = c0(α) = . . . = ck(α) = bα = 0}.

Z is cofinite and J1 is P-primary, so there is d ∈ E with ann(d) = J1 and supp(d) ⊂ Z
(where supp(d) = {α ∈ κ : d(α) �= 0}). Choose em−1 a solution of ϕm−1 in E such
that em−1|Z = d|Z. This is clearly possible since J1 ⊃ J. Since each successor of
t is a leaf, b is definable over B ∪ {e j : j < m}, by some formula ϕm(v) of the form
“s.v = ∑m−1

j=0 s j.e j + c” with s �∈ P and c ∈ B.

Let ϕ∗(v) be s.v = ∑m−1
j=0 p0s j.e j . Then p0.b is the unique solution of ϕ∗ in E.

Now for every i ∈ Z, p0sm−1.em−1(i) = 0, so p0sm−1 ∈ ann(d) = J1 . Thus there
is r ∈ � \ P such that rp0sm−1 ∈ J. Let ϕ∗∗(v) be rs.v = ∑m−1

j=0 rp0s j.e j . Since
r �∈ P, p0.b is also the unique solution of ϕ∗∗ in E. Now rp0sm−1 ∈ J, so there
are t1, . . . , tk ∈ � such that rp0sm−1 = ∑k

i=1 tiri . Since for 1 ≤ i ≤ k, ri.em−1 =∑m−2
j=0 rij.e j + ci,

rp0sm−1.em−1 = (

k∑

i=1

tiri).em−1

=
k∑

i=1

ti.(
m−2∑

j=0

rij.e j + ci)

=
m−2∑

j=0

(

k∑

i=1

tirij).e j +
k∑

i=1

ti.ci
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Thus ϕ∗∗ can be rewritten in terms of e0, . . . , em−2 alone, as

ϕ∗
m−1(v) = “rs.v =

m−2∑

j=0

(rp0s j + (

k∑

i=1

tirij)).e j +
k∑

i=1

ti.ci”.

Replace the formula part of λ(t) by ϕ∗
m−1(v), and delete all the successors of t.

Once we have carried out the above process for all the leaves of T , the result will
clearly be an analysis of rk+(p0.b, B, E), necessarily of rank m − 1 since we have
truncated all the maximal leaves of T . This is the promised contradiction.

The authors have considered the problem of the Deissler rank complexity of ar-
bitrary injective modules (over a commutative Noetherian ring), that is, the case of
arbitrary direct sums of indecomposables, but Conjecture 2.15 of [4] remains open.
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